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On the basis of the Reynolds equations in the approximation of the boundary layer, the article 
obtains the similarity solutions for the axisymmetric wake of a body with a hydrodynamic pro- 
pulsion agent. 

A theoretical analysis of the turbulent wakes of bodies with a hydrodynamic propulsion agent was car- 
ried out in [i], and the regularities of attenuation of the axial velocity were obtained on the assumption that 
the difference of the normal stresses is small. Experimental investigations [2-8] showed that the magnitude 
of the normal stresses plays an importar~t part in such flows. Procedures for numerical calculation were 
suggested [9-12] yielding results compatible with the experimental results. The authors of [2, 9, 13-16] pro- 
vided a theoretical analysis of the examined flow from different positions. The similarity solutions with one 
scale function of the length and different amplitude functions for different magnitudes were analyzed in detail 
in [16]. 

Below we obtain the similarity solutions for the distribution of the mean velocity over the sections of 
the wake and of single-point second-order momenta for velocity pulsations. We obtain the similarity laws 
of attenuation of the scalar magnitudes and their correlations with the velocity pulsations, and also the dis- 
tributions of these magnitudes over the sections of the wake. 

In a system of cylindrical coordinates, the equations describing turbulent flow behind a self-propelled 
body, the diffusion of temperature perturbations, in the approximation of the boundary layer, and the conti- 
nuity equations are  written as follows: 

Ou~ Ou~ 
(u ~ + .~) -&x + v ~ + - -  - -  

OT 
(u~ + u~) -fxx + v - -  

1 a a (R1 _R~2) = o, (1) 
r Or (rRle) -[- "~X 

OT 1 0 
----- (r < v'O > ), (2) 

Or r Or 

a a (rv) = o .  ( a )  a-T (~u,) + 

For  closing the obtained sys tem,  we write the equations for  the second-order  corre la t ion  momenta,  
wri t ten in the approximation of the boundary layer :  
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The  b o u n d a r y  cond i t i ons  a r e :  

The  i n t e g r a l  cond i t i ons  a r e :  
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It was shown in [16] that for the given problem there exist similarity variables 

X --- x, ~1 = c~rx-P. (12) 

The  s i m i l a r i t y  i n d i c a t o r  p i s  not  d e t e r m i n e d  e i t h e r  f r o m  the i n t e g r a l  cond i t ion  (11) o r  f r o m  Eqs .  (1)-(9) ,  i . e . ,  
f o r  d e t e r m i n i n g  p we have  to have  r e c o u r s e  to e x p e r i m e n t a l  i n v e s t i g a t i o n s  o r  o t h e r  t h e o r e t i c a l  c o n s i d e r a t i o n s .  
Us ing  the  s i m i l a r i t y  v a r i a b l e s  of  (12), we w r i t e  the  f low func t ion  q~ i n t r o d u c e d  in a c c o r d a n c e  wi th  the oont inu i ty  
equa t ion  (3), the  n o r m a l  s t r e s s  1t11-1:122 , the  t angen t i a l  s t r e s s  Rip., and the  t u r b u l e n t  e n e r g y  E in the  f o r m  of 
s e r i e s  wi th  d e c r e a s i n g  p o w e r s  of  X: 
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The system of equations (i)-(9) is open. To close it, various models [17] were suggested. We use the 

simplest of the possible ways of second-order closure: 
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We presume that the macroscale A is proportional to the width of the wake: 

A = bX p. (15) 
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Fig. 1. Distr ibut ion:  a) of no rma l  s t r e s s  (1) and of 
turbulent  ene rgy  (2) o v e r  the sect ion of the jet; b) of 
the veloci ty  o v e r  the sect ion of the jet. 

If  we subst i tute exp re s s ions  (13) and (14) into the cor responding  equations of the s y s t e m  (1)-(9) and equate 
the coeff ic ients  of equal power s  of X, we obtain a s y s t e m  of o rd ina ry  different ia l  equations which can be solved 
numer ica l ly .  To s impl i fy  the obtained s y s t em,  we introduce the turbulent  v i scos i ty  eT and consider  it constant 
a c r o s s  the flow: 

0U 1 RI~ : eT---~r , e T c,,~ eE I /2A .  

Then,  taking (16) into accou.ut, the equations fo r  the s imi l a r i t y  functions f0, ~~ go a s sume  the f o r m  
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By the substi tut ion 771 = -  o~72/2, the homogeneous  equations of s y s t e m  (17) a re  reduced to confluent 
h y p e r g e o m e t r i e  equations [18]. The solution of the th i rd  equation of s y s t e m  (17) is  wr i t ten  via the confluent 
h y p e r g e o m e t r i c  functions [18]: 

bp ' bp ' j 

Only 'the function �9 sa t i s f i es  the boundary eondttions (10). The exper imen ta l  invest igat ions  [2-81 show t l~t  the 
prof i le  of turbulent  energy  is  well approx imated  by an exponential  funetion, and t h e r e f o r e ,  without los s  of 
genera l i ty ,  we m a y  state t t~ t  the expres s ion  - 1  - (c 1 - b)bp is  equal to unity on account of the select ion of the 
constant e 1. Then expres s ion  (18) is  r ewr i t t en  as follows: 

go = Eme -~n~/2. (19) 

We substi tute (19) into the second equation of s y s t e m  (17) and put the value of the expres s ion  (b - %)/bp - 1 = 
0.5 by sui tably choosing the constant  c3, and we wri te  the solution sat isfying the boundary conditions (10): 

~o~_Bae_Ckn~/2_~_+Eme-an~/2 [+~112 _~_~ (n - - l ) !  ( + a B ~ . ) ~ l .  (20) 
,=2 n ( 2 n - -  1)} 

The constant  B t d e t e r m i n e s  the ampli tude of the no rma l  s t r e s s  on the axis  of the wake. F o r  the sake of s i m -  
pl i f icat ion it was adopted in [15] tha t  the prof i le  of the n o r m a l  s t r e s s e s  has  the same  f o r m  as the prof i le  of 
the turbuler~t energy.  F igure  l a  shows the s imi l a r i t y  dis t r ibut ion of turbulent  ene rgy  (19) and of no rma l  s t r e s s  
(20) ove r  the sect ion of the wake. I t  can be seen  f r o m  the f igure that  the prof i le  of the no rma l  s t r e s s e s  has  a 
f l a t t e r  peak  at the center  of the wake than the prof i le  of turbulent  energy.  

F o r  the f i r s t  equation of s y s t e m  (17), the gene ra l  solution sat isfying the boundary conditions (10) and 

the in tegra l  condition (11) is wr i t ten  as follows: 

f'o __ B2q~( 1_~___1 1, . 1  c~cdq2" ~ ~_e_C~n2/2 b~ 1 ~ c ~ p  
~1 \ p  ' 2 n~l ~ .  - -  2 ' 
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(a) and dis tr ibut ion of the turbulent  e n e r -  
gy and of the mean  veloci ty along the 
axis of the wake (b): 1) exper imenta l  data 
of [2]; 2) of [3]; 3) of [4]; 4) of [5]; 5) of 
[6]; 6) of [7]; 7) of [8]. 

b~ = B~ ( 1-p - - I ) ,  b2 ~- + B~ / 1 ~--~ + pZl c2pl ), 3c2pE'~ ~_ 2c~1 2pl , 

(21) 

n! (n--l)! \ c~pn ~ n n~(n--2)! c 2 - 7  + 

+__~_E,,(__ (__1 ]n- ' (n--2)!  ( l+  p - - 3 p ( n - - 1 ) ) ,  n ~ 3. 
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The constant  ]32 d e t e r m i n e s  the value of the m a x i m u m  of the veloci ty  on the axis  of the wake. The in tegra l  
condition (10) is  sa t i s f ied  fo r  any values of ]31, ]32. Exper imenta l  m e a s u r e m e n t s  [2-7] of veloci ty  at tenuation 
on the axis  of the wake yield the value p = 1/4, then the longitudinal veloci ty  is  

u~ = u =  X2p-2@ f;1 X , p - 4  = u .  f'o X-3/2.+ f;~ X _  ~ (22) 
r Or ~] ~ ' 

i . e . ,  the co r r ec t ion  in the nons imi la r i ty  t e r m  in the resolut ion of the veloci ty  is  smal l  compared  with the 
s i m i l a r i t y  solution. It  can be seen  f r o m  fo rmula  (21) that the scale  of the t r a n s v e r s e  coordinate  ~ for  the 
veloci ty  is  p ropor t iona l  to c 2 ~J2 in dist inction to the scale  ~ for  the turbulent  ene rgy  and no rma l  s t r e s s ,  
where  it is  p ropor t iona l  to o~/2. F igure  lb  shows th,'~t in dependence on the ra t io  of the constants  in (21), in 
the wake of a s e l f -p rope l l ed  body two kinds of distr ibution of axial veloci ty  m a y  be rea l ized .  In Fig. 2a the 
r e su l t s  of the caiculat ions of the theore t iea i  change of the width of the wake ~bXP for  p = 1/4  (solid s t ra ight  
line) are being compared with the available experimental data. The authors of [4, 5] studied the wake of an os- 
cillating screen. Figure 2b presents the experimental data on the change of the maximum of turbulent energy 
and of the maximum of the averaged velocity along the axis of the wake; the solid line corresponds to the theo ~- 
retical solution (p = 1/4). 

Let us examine the thermal wake. From the system of equo:tions (1)-(9) and the integral condition (i0) 
we ob~ain the following similarity laws: 

i 

T = T~dl(~I)X-2P~ - . . . .  ( v'O > = u~T| -p-1 + . . .  , (23) 

< 0 ~ > =- T ~  Q1) X -4v + . . . .  < u'O ) = u=T~% (q) X-Z-4 - . .. 

I f  we subst i tute the expansions  (23) into (1)-(9), we obtain the s y s t e m  of o rd ina ry  different ia l  equations 

p~ld[ -Jr- 2pd~ = a((9~ -{- qh/~l), ~ = p/(abs~), 

1 E~a~e -a~/2 d~, (24) ,p~ + (~ + 1/~),pl + ~(1--(s~--b)bp),p~=- Tp 

tp~ + (1~ -]- l/B) qD2 + 2~(2 --sl/bp) (P2 = 2ep~d;/bs~. 

In tegra t ing  the f i r s t  equation of s y s t e m  (24), we obtain the explicit  dependence of the prof i le  of ave raged  t e m -  
p e r a t u r e  on the co r re l a t ion  < v '  0> : 
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qb_= P dl'q. (25) 
(Y 

If we exp res s  ftmetion d 1 f rom (24) and substitute it into the second and th i rd  equations of sys tem (24), we 
obtain o rd ina ry  differential  equations for  ~1 and ~2 which can be solved numerica l ly .  

We will examine the solution of sys tem (24) on the basis  of the model for  the coefficient of effective 
turbulent  t he rma l  diffusion ~/T~,~ TAE 1/2, considering it constant a c ro s s  the wake: 

< v'0 ) = ~ T T ~ r  T . (26) 

In accordance  with (25) we obtain the following differential  equation for  the function di: 

d~ ~ d~ (a2r I + llvl) + 2~z~d~ = O, a s = p/(ya2b).  (27) 

The solution of this  equation is 

d 1 = Trne-cc2"q'/2, 

where  the constax~t T m is de te rmined  f rom the integral  condition (ii). 
r ight-hand side of the th i rd  equation of sys tem (24): 

2 
q~2 + ([3~1 + 1/~1) q~'2 ~- 213 (2 - -  s J b p )  r = - -  27d i  /s2. (29) 

The genera l  solution of Eq. (29) satisfying the boundary conditions (10) is expressed  through the confluent 
hype rgeomet r i c  functions [18]: 

eP2 = Omq~ 4 - -  2sJ 'bp,  1, - -  - -~ [3~1 z - -  ,,=2 ~ - -  ~ [~nz 

2 2 . 2 2 (1 - -  S l ) / ( 2 b p ) - -  5az/~)a2,  (30) a2 = - -  7 a 2 T r n / ( S ~  ), a3 : 

(28) 

We substitute express ion  (28) into the 

a,~ a n _ l  [ ( 2 _ 2 %  s~ ) 1  4 (z_.L ( 1  _k _ ~ ) n - - l -  + 2  a~ a ,_2  
n! (n--l)! [5 bp n z ~ - - - ~ ]  ~ nZ(n-- 2) ! 

F o r  p = 1/4 we obtain tb.gt the attenuation ra te  of the averaged t e m p e r a t u r e  is  proport ional  to X -t/2 (for the 
averaged  speed o~ i .e . ,  the sca la r  magnitudes in the wake of the propuls ion ager~t degenerate  much 
mor e  slowly than the vector ia l  ones. F o r  the attenuation of veloci ty and t em p e ra tu r e  pulsat ions E oo X-3/2, 
< 0 z> ~ X - t ,  i .e . ,  the energy  of turbulence fades much m o re  quickly than the square of the ' temperature  put- 

sations.  The longitudinal cor re la t ion  < u'0> is  propor t ional  to X -2 and does pot  depend on 'the indicator  p. 
The degenerat ion of 'the t r a n s v e r s e  cor re la t ion  < v'0> is  propor t ional  to X -5/4, i .e . ,  considerably s lower than 

'the longitudinal cor re la t ion  < u'O>. 

N O T A T I O N  

x, r ,  cyl indrical  coordinates;  u~,  speed of the propell ing agent; u, v, averaged longitudinal and t r a n s -  
ve r se  speed,  r e spec t ive ly ,  in the wake; u 1, excess  veloci ty in the wake; T, averaged excess  t empera tu re  in 
the wake; v, kinematic  viscosi ty;  a ,  t he rma l  diffusivity; R i i  = < u i 'u j '> ,  cor re la t ion  of velocity pulsations 
(i, j = 1, 2, 3, ui '  , - 'u ' ,  u2' "~ v ' ,  43,, , . . . .  ,~p,'\. E = <u'~> + <u'~> + <u'~ >, turbulent  energy;  p ' ,  p r e s s u r e  pul-  
sation; p, density; 0,  t e m p e r a t u r e  pulsation; e, a ,  c l, c2, %, sl,  82, 83, b, empir ica l  constants;  r * ,  d is -  
tance f r om the axis of the wake where the veloci ty is  equal to half  'the maximum in the given section. 
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HEAT EXCHANGE IN ANNULAR CHANNEL 

WITH INTERMEDIATE HEAT CARRIER 

V. A. Dement'ev UDC66.047 

The a r t i c l e  explains  the r e su l t s  of the exper imen ta l  invest igat ion of heat  exchange in an annu- 
l a r  channel with an ir~termediate heat  c a r r i e r .  A compar i son  is  p r e s e n t e d  with coaxial  cyl in-  
de r s  rota t ing in the s ame  direct ion.  The exper imen ta l  devices  a re  descr ibed.  

A characteristic feature of all structures for drying sheet material on drums is the possibility of heat 
transfer from a primary hegt carrier with elevated pressure and temperature to the material through inter- 
mediate heat carriers making it possible, without greatly raising the pressure in the drum cavity, substan- 
tially to increase the temperature of the drum surface, and thus to intensify the drying process. As inter- 
mediate heat carriers various high-temperature (organic and inorganic) liquids are suggested which have 
low vapor pressure at high temperature. At the Kaliningrad Branch of the Central Research, Project, and 
Design Institute for Planning Equipment of the Pulp and Paper Industry (TsNIIbummash) also a number of 
designs were suggested where beet transfer is effected from an inner (moving or fixed) cylindrical jacket, 
consisting of annular pipes and being heated by highly superheated steam, to the outer shell of the drying 
drum through an intermediate heat carrier that fills the closed annular space (channel) between the tubular 

jacket and the outer drum shell. 

Inside the drying drum, heat exchange using an intermediate heat carrier proceeds similarly to heat 
exchange in the annular channels of coaxial cylinders where the gap between them is filled with a heat carrier 
that does not move axially, and the heat is transferred from the inner cylinder to the outer cooling cylinder 
by a heat carrier filling the space between them [1-18]. 

Kaliningrad Branch of the Central Research, Project, and Design Institute for Planning Equipment of 
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